
10/18/22

1

Mixing Relational with NoSQL
Heresy or Harmony?

Presented on 13th October 2022
at

HrOUG 2022
Rovinj, Croatia

by
Niall Mc Phillips - Long Acre sàrl

niall.mcphillips@longacre.ch

@Niall_McP

1

2

10/18/22

2

3

4

10/18/22

3

About me: Niall Mc Phillips

Owner - Long Acre sàrl (founded 2015)
Co-founder and Director - Stephenson and Associates (founded 1995)
Irish 🇮🇪 / 🇨🇭 Swiss Living in Geneva, Switzerland.

• Oracle ACE
• Using Oracle database as a Developer and DBA for >30 years
• Developing web applications with Oracle DB since 1995
• Developing with APEX since 2005
• Organizer of the Swiss APEX Meetup group

@NiallMcP
niall.mcphillips@longacre.ch

5

3 membership tiers

Connect: @oracleaceFacebook.com/OracleACEsaceprogram_ww@oracle.com

500+ technical experts
helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their
technical and community contributions to the
Oracle community

Nominate
yourself or someone you know:

ace.oracle.com/nominateFor more details on Oracle ACE Program:
ace.oracle.com

6

http://acenomination.oracle.com/
bit.ly/OracleACEProgram

10/18/22

4

Relational – very-condensed history
• 1970 - First defined by E.F.Codd of IBM and was published in

the IBM Systems Journal

7

Relational – very-condensed history
• 1970 - First defined by E.F.Codd of IBM and was published in

the IBM Systems Journal

• 1979 - a start-up company called “Relational Software Inc.”

(RSI) released a product that they named “Oracle”
Interesting factoid, the first Oracle release was “version 2” – because no

one would want to buy version 1

8

10/18/22

5

Relational - Normalisation
Let's start with a list of data representing short-term apartment rentals

Apartments

Address Description Landlord Landlord
phone

Landlord
e-mail

Currency Price /
week

Amenities

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 980 Wifi
Kitchen
Balcony

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 1480 Wifi
Kitchen
Garden

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520 Wifi
Kitchenette

9

Relational – 1st Normal Form
Multiple values not allowed in columns

Apartments

Address Description Landlord Landlord
phone

Landlord
e-mail

Currency Price /
week

Amenities

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 980 Wifi,
Kitchen,
Balcony

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 1480 Wifi,
Kitchen,
Garden

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520 Wifi

10

10/18/22

6

Relational – 1st Normal Form
Multiple values not allowed in columns

Apartments
Address Descriptio

n
Landlord Landlord

phone
Landlord
e-mail

Currency Price /
week

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@a
pt.ch

CHF 980

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@a
pt.ch

CHF 1480

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520

Address Amenity
21 Rue du Saut Wifi

21 Rue du Saut Kitchen

21 Rue du Saut Balcony

62 Rue du Pirate Wifi

62 Rue du Pirate Kitchen

62 Rue du Pirate Garden

42 Rue des Caraïbes Wifi

11

Relational – 2nd Normal Form
2nd Normal Form can be achieved by adding a single-value primary key

Apartments
ID Address Descript

ion
Landlor
d

Landlor
d phone

Landlor
d e-mail

Currenc
y

Price /
week

1 21 Rue du
Saut

blah,
blah

D. Jepp 022 678
4322

d.jepp@
apt.ch

CHF 980

2 62 Rue du
Pirate

blah,
blah

D. Jepp 022 678
4322

d.jepp@
apt.ch

CHF 1480

3 42 Rue des
Caraïbes

blah,
blah

M.
Curphy

01 78
43 22
56

m.curph
y@xyz.
ch

CHF 520

ID Address Amenit
y

1 21 Rue du
Saut

Wifi

2 21 Rue du
Saut

Kitche
n

3 21 Rue du
Saut

Balcon
y

4 62 Rue du
Pirate

Wifi

5 62 Rue du
Pirate

Kitche
n

6 62 Rue du
Pirate

Garde
n

7 42 Rue des
Caraïbes

Wifi12

10/18/22

7

Relational – 3rd Normal Form
Remove redundancies

Apartments
ID Address Description Landlord ID Curr

ency
Price /
week

1 21 Rue du Saut blah, blah 1 CHF 980

2 62 Rue du Pirate blah, blah 1 CHF 1480

3 42 Rue des Caraïbes blah, blah 2 CHF 520

Apartment
Amenities
Apartment
ID

Amenity
ID

1 1

1 2
1 3
2 1

2 2

2 4

3 1

Landlords
ID Name Phone e-mail

1 D. Jepp 022 678 4322 d.jepp@ap
t.ch

2 M.
Curphy

01 78 43 22 56 m.curphy
@xyz.ch

Amenities
ID Amenity
1 Wifi

2 Kitchen

3 Balcony

4 Garden

13

Relational – Normalisation
We could now construct SQL statements joining tables to

answer questions such as :

• Which apartments have kitchens and how much are they?

• Which apartments are operated by D. Jepp and what are

their amenities?

• etc.

14

10/18/22

8

Relational – Major Benefits
• Data Integrity is ensured

• Structure is explicitly defined outside of the data

• Reliability, tried and tested approaches

• Easily-defined transactions

15

Relational – Some Drawbacks
• Lack of flexibility
• Complexity

16

10/18/22

9

JSON
• Dates from the early-2000's by Douglas Crockford

17

JSON
• Dates from the early-2000's by Douglas Crockford
• First standardized in 2013 (ECMA-404)

18

10/18/22

10

JSON
• Dates from the early-2000's by Douglas Crockford
• First standardized in 2013 (ECMA-404)

• 2017 – ISO/IEC standard (ISO/IEC 21778:2017)

19

JSON
• Dates from the early-2000's by Douglas Crockford
• First standardized in 2013 (ECMA-404)

• 2017 – ISO/IEC standard (ISO/IEC 21778:2017)

• Independent of underlying technologies

20

10/18/22

11

JSON
• Dates from the early-2000's by Douglas Crockford
• First standardized in 2013 (ECMA-404)

• 2017 – ISO/IEC standard (ISO/IEC 21778:2017)

• Independent of underlying technologies
• Wide adoption in the development community

21

JSON

Let's take another look at our short-stay

apartment list

22

10/18/22

12

A JSON object for one apartment
{
"id":1,
"address":"21 Rue du Saut",
"description":"blah, blah",
"weeklyPrice":"980",
"currency":"CHF",
"landlord":{”name":”D.Jepp",

"phone":"022 678 4322",
"email":"d.jepp@apt.ch"},

"amenities":["Wifi",
"Kitchen",
"Balcony"]

}

23

JSON

«Great - But…»

let's look at this in a different way

24

10/18/22

13

A JSON object for one landlord
{
"id":"1",
"name":"D.Jepp",
"phone":"022 678 4322",
"email": "d.jepp@apt.ch",
"apartments":[

{"id":"1",
"address":"21 Rue du Saut",
"description":"blah, blah",
"weeklyPrice":"980",
"currency":"CHF",
"amenities":["Wifi",

"Kitchen",
"Balcony"]

},

{"id":”2",
"address":"62 Rue du Pirate",
"description":"blah, blah",
"weeklyPrice":"1480",
"currency":"CHF",
"amenities":["Wifi",
"Kitchen",
"Garden"]
}
]
}

25

Adding reviews
Let's add reviews from people that have stayed in the

apartments

• Reviewer ID

• Reviewer Name

• Stars Given

• Review Text

26

10/18/22

14

Adding reviews - Relational
Data Model changes – add at least 2 tables
• a table of Reviewers with ID and Name

• a table of Reviews

Reviewers
ID Name
1 James Plunkett
2 James Connolly

Reviews
APT ID Reviewer ID Stars Review Text
1 1 5 Great apartment!
1 2 4 Nice apartment, but

27

Adding reviews - JSON
• Add an array of reviews
{
"id":1,
"address":"21 Rue du Saut",
…
,
"reviews":[{"reviewerId":1,

"name":"James Plunkett",
"stars":5,
"text":"Great apartment!”},
{"reviewerId":2,
"name","James Connolly",
"stars":4,
"text":"Nice Apartment, but"}

]
}

28

10/18/22

15

Adding even more reviews
What if we have 1,000's of reviews?

• Relational – the Reviews table just gets more entries

• JSON – we get a gigantic array and the JSON object

becomes huge.

29

Adding even more reviews
What if we have 1,000's of reviews?

30

10/18/22

16

Adding even more reviews
What if we have 1,000's of reviews?

Another approach from the JSON viewpoint would be to

predict application usage patterns.

31

Adding even more reviews
What if we have 1,000's of reviews?

Another approach from the JSON viewpoint would be to

predict application usage patterns.

For example:

• Users usually view the apartment listing along with the

description and the most recent reviews.

32

10/18/22

17

Adding even more reviews
What if we have 1,000's of reviews?

Another approach from the JSON viewpoint would be to

predict application usage patterns.

For example:

• Users usually view the apartment listing along with the

description and the most recent reviews.

• So, why not just keep the 5 most recent reviews in the

JSON object?

33

Once upon a time

Many, many years ago when I was learning about data
modelling, one thing was repeatedly hammered into my

brain

“Never consider the application

when modelling the data

- let the data speak for itself”

34

10/18/22

18

More recently

“Let's write the applications,
we'll structure the data as we evolve”

35

Culture Clash?

“Never consider the application

when modelling the data

- let the data speak for itself”

vs.

“Let's write the application,

we'll structure the data as we evolve”

36

10/18/22

19

Culture Clash?

Let see if there's another path...

37

What if we could do both?

• The benefits of the structure of a relational database for

the core model

PLUS

• The flexibility and ease of deployment of JSON

38

10/18/22

20

JSON in the Oracle Database

With 21c we can now store JSON as a native datatype
JSON Binary Type

New datatype in SQL, PL/SQL
Natively supported in all drivers

OCI, JDBC, node.js, python (.NET in progress)
Based on OSON - Optimized Binary representation

Self-contained format
Fast field lookups
Piecewise Updates possible

Performance Benefits
Scans up to 5x faster than textual JSON
Updates up to 10x faster than textual JSON

39

What we’re going to look at now

40

10/18/22

21

What we’re going to look at now

• Defining a JSON column in a table

41

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways

42

10/18/22

22

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation

43

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

44

10/18/22

23

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

• Updating JSON

45

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

• Updating JSON
• Indexing JSON

46

10/18/22

24

Defining a JSON column

create table apartments
(apt_id number,
address varchar2(255),
recent_reviews JSON);

47

Inserting JSON
insert into apartments values
(4, '78 Rue de l''Avenir',
'{"latestStay":"2022-04-28",

"reviews":
[{"name": "James Plunkett",
"stars": 5,
"text": "Great apartment!" },

{"name": "James Connolly",
"stars": 4,
"text": "Nice Apartment, but..."}

]
}');

48

10/18/22

25

Inserting JSON using JSON_OBJECT
insert into apartments (apt_id, address, recent_reviews)
select 7, '6 Rue des Autres',

json_object(key 'latestStay' is '2022-09-30’,
'reviews' value

json_arrayagg(
json_object(key 'name' is d.name,

key 'stars' is d.stars,
key 'text' is d.text)

returning clob)
returning clob)

from (select 'High King' as name, 5 as stars, 'Enjoyable stay' as text from dual
union

select 'High Queen', 5, 'Good enough for me' from dual) d

49

Demo time!

50

10/18/22

26

Querying JSON –
Dot notation

select a.apt_id,
a.address,
a.recent_reviews.reviews[0].name,
a.recent_reviews.reviews[0].name.string(),
a.recent_reviews.reviews[1].name,
a.recent_reviews.reviews[1].name.string()

from apartments a;

51

Querying JSON –
All array elements as a JSON array

select a.apt_id,
a.address,
a.recent_reviews.reviews[*].name as reviewers

from apartments a;

52

10/18/22

27

Querying JSON –
Using JSON_TABLE to return multiple rows

select a.apt_id, a.address,
j.name as reviewer,
j.stars, j.text as review

FROM apartments a,
json_table(a.recent_reviews, '$.reviews[*]'
columns (name varchar2(30) path '$.name',

stars number path '$.stars',
text varchar2(50) path '$.text')) j;

53

Querying JSON –
Creating a view on the JSON values

create or replace view vw_apartment_reviews as
select a.apt_id, a.address,

j.name as reviewer,
j.stars, j.text as review

FROM apartments a,
json_table(a.recent_reviews, '$.reviews[*]'
columns (name varchar2(30) path '$.name',

stars number path '$.stars',
text varchar2(50) path '$.text')) j;

54

10/18/22

28

Updating JSON – JSON_TRANSFORM
changing a value

update apartments a
set a.recent_reviews

= json_transform
(a.recent_reviews,
set '$.latestStay' = to_char(sysdate,'YYYY-MM-DD'))

where a.apt_id = 7;

55

Updating JSON – JSON_TRANSFORM
removing an array element

update apartments a
set a.recent_reviews

= json_transform
(a.recent_reviews,
remove '$.reviews[*]?(@.name=="High Queen")')

where a.apt_id = 7;

56

10/18/22

29

Updating JSON – JSON_TRANSFORM
removing an array element

update apartments a
set a.recent_reviews

= json_transform
(a.recent_reviews,
append '$.reviews'

= json_object(key 'name' is 'ConTech',
key 'stars' is 5,
key 'text' is 'Approved by HrOUG'))

where a.apt_id = 7;

57

Updating JSON – JSON_TRANSFORM
appending an array element

update apartments a
set a.recent_reviews

= json_transform
(a.recent_reviews,
remove '$.reviews[*]?(@.name=="High Queen")')

where a.apt_id = 7;

58

10/18/22

30

Indexing JSON

• Function indexes for simple cases
• Multivalue indexes for array elements
• Search Index for other searches

See Search indexes for JSON – Roger Ford, Oracle - 23rd Nov 2021

59

Indexing JSON - Simple cases
• Function indexes for simple cases

create index ind_apartments$1
on apartments

(recent_reviews.latestStay.string());

then
select * from apartments a
where a.recent_reviews.latestStay.string() = '2022-09-30';

60

https://blogs.oracle.com/database/post/search-indexes-for-json

10/18/22

31

Indexing JSON - Multivalue indexes
For array elements:
create multivalue index ind_apartments$2
on apartments a
(a.recent_reviews.reviews[*].name.string());

then...
select a.* from apartments a
where json_exists(a.recent_reviews,

'$.reviews?(@.name == "James Plunkett")');

61

Indexing JSON – Search Indexes
For textual searches (similar to Oracle Text):
create search index ind_apartments$3
on apartments (recent_reviews) for json;

then...
select a.* from apartments a where
json_textcontains(a.recent_reviews,

'$.reviews.name’,
'james');

62

10/18/22

32

JSON in the DB Use Cases – some examples
• Equipment certification – the certificates should reflect only

the certificate information issued at the date of issue despite
any changes to the data structure since certification.

• Auditing – allows data changes to be tracked over an
evolving data model

• Fast-moving, “temporary” data – i.e. this month's “special
pick”

63

Upcoming Oracle 23c JSON features
JSON Schema
• various options to validate documents against a JSON

Schema definition. The JSON Schema can be defined on a
table column – almost as a check constraint. It can be
used in a query to only select values that satisfy the
schema and using package dbms_json_schema validation
reports can be retrieved on specific values against a JSON
Schema.

64

10/18/22

33

Upcoming Oracle 23c JSON features
JSON Schema

65

JSON in Oracle – Multiple avenues
• Oracle SODA – accepts JSON from multiple environments

• Java, Node.js, REST, C, Python, PL/SQL

• Oracle's new MongoDB Drivers and Tools

• REST and ORDS

• SQL and PL/SQL

66

10/18/22

34

PL/SQL - APEX_JSON
There is a DB package called APEX_JSON that can be used
for parsing and generating JSON – available since APEX 5.0

apex_json.open_object();
apex_json.write('latestStay','2022-10-06’);
apex_json.openArray('reviews’);
apex_json.open_object();
apex_json.write('name','RoOUG Reviewer');
apex_json.write('stars','5');
apex_json.write(‘text’,’Lovely place’);

apex_json.close_object();
apex_json.close_array();

apex_json.close_object();

67

PL/SQL – JSON Object Types

JSON_OBJECT_T
JSON_ARRAY_T

Each object type has multiple methods are available for
parsing, building, modifying and inspecting JSON
structures

68

10/18/22

35

PL/SQL – JSON Object Types vs APEX_JSON
A recent article by Jon Dixon would indicate that the PL/SQL

JSON Object types are many times faster than APEX_JSON for
parsing JSON.

For Speeds Sake, Stop Using APEX_JSON (Jon Dixon, 5th June 2022)

69

Advantages of Relational / JSON Hybrid models
• Less tables, more flexibility
• Very infrequently used attributes don’t need to be

modelled as stringently
• Modern approach that non-Oracle developers can

quickly identify with and adopt

70

https://blog.cloudnueva.com/for-speeds-sake-stop-using-apexjson

10/18/22

36

Challenges of Hybrid models
• With less tables and more flexibility - more attention

needs to be paid to ensuring data integrity

• Finding the right balance between relational and
JSON for your data, your application and your
environment

71

NoSQL / JSON in the Database
• JSON in the Database is here to stay

• Let’s embrace it and add it to our toolkit

72

10/18/22

37

73

