
Handling Errors
during

Bulk DML operations

Erik van Roon

HrOUG Autumn 2022

Who Am I?

: erik.van.roon@evrocs.nl
: www.evrocs.nl
: @evrocs_nl

Erik van Roon

>=Oracle5

Core team
MASH Program

1995 2009

Member of Symposium 42
https://sym42.org/

mailto:erik.van.roon@evrocs.nl
http://www.evrocs.nl/
https://sym42.org/

Mentor and Speaker Hub

Our goal is to connect speakers with mentors
to assist in preparing technical sessions and

improving presentation skills

Interested? Read more and get in touch

https://mashprogram.wordpress.com

3 membership tiers

Connect: @oracleaceFacebook.com/OracleACEsaceprogram_ww@oracle.com

500+ technical experts

helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their technical and community
contributions to the Oracle community

Nominate
yourself or someone you know:

ace.oracle.com/nominate
For more details on Oracle ACE Program:
ace.oracle.com

http://acenomination.oracle.com/
bit.ly/OracleACEProgram
bit.ly/OracleACEProgram

Background of this talk

Did a number of data migrations:

• Merge data of acquired competitor into own database

• Similar data but completely different data models

• Transformation may/will lead to problems

• Errors should be handled gracefully

• An error in a child record sometimes means the parent
shouldn’t be present either

• Limited window for executing the migration

In this presentation

Preparation\create_demo_objects.sqlScripts will be mentioned like this

The scripts need some objects created by

Among which a table based upon sh.customers

When you’re done Cleanup\cleanup.sql

Row By Row Single SQL Statement

So why
Bulk Operations?

Not the fastest
But fast

And Full Control

How fast is Bulk Fetching?

Slow-by-Slow fetching

Bulk fetching

Perf\slow_by_slow_fetch.sql

Perf\bulk_fetch.sql

open c_err;
loop
fetch c_err
into r_err;

exit when c_err%notfound;

open c_err;
loop
fetch c_err
bulk collect
into a_err
limit cn_bulk_limit;

exit when a_err.count = 0;

How fast is Bulk Data Manipulation?

Slow-by-Slow update Perf\slow_by_slow_update.sql

Perf\bulk_update.sql

for i_err in 1 .. a_err.count
loop
update bulk_errors_perf
set cust_last_name = trim(cust_last_name)
where rec_id = a_err(i_err).rec_id
;

end loop;

Bulk update
forall i_err in indices of a_err

update bulk_errors_perf
set cust_last_name = trim(cust_last_name)
where rec_id = a_err(i_err).rec_id

;

During Bulk Data Manipulation…

No exception handling per row

No savepoint to rollback to

Luckily there are Save Exceptions and Log Errors

Error Handling

During Bulk Fetching…

None

Save Exceptions

Saves the exceptions until all iterations of the forall are processed

declare
type l_tst_aat is table of some_table%rowtype index by pls_integer;
l_tst_aa l_tst_aat;

begin

[....]

forall i_tst in 1 .. l_tst_aa.count
insert
into some_table
values l_tst_aa(i_tst)

;
end;
/

save exceptions

And then….
ORA-24381: error(s) in array DML

ORA-24381

This can be handled in an exception handler

declare
e_bulk_errors exception;
pragma exception_init(e_bulk_errors, -24381);

begin
[...]

forall [...] save exceptions
[...]

;
exception

when e_bulk_errors
then
[...]

end;
/

Pseudocollection

Pseudocollection sql%bulk_exceptions is available

"Composite attribute that is like an associative array of
information about the DML statements that failed during the
most recently run FORALL statement"

Two attributes:

Error_index

The number of the DML statement that failed

Error_code

The Oracle Database error code for the failure

Handling the exceptions

Pseudocollection identifies which statements in forall raised which exception.

SaveExceptions\dense_collection.sql

exception
when e_bulk_errors
then
dbms_output.put_line ('Exceptions');
dbms_output.put_line ('==========');

for i_err in 1 .. sql%bulk_exceptions.count
loop
l_error_index := sql%bulk_exceptions(i_err).error_index;
l_error_code := sql%bulk_exceptions(i_err).error_code ;

dbms_output.put_line ('Exception sequence: '||i_err);
dbms_output.put_line ('Error_index : '||l_error_index);
dbms_output.put_line ('Error_code : '||l_error_code);
dbms_output.put_line ('Error Message : '||sqlerrm(-1 * l_error_code));
dbms_output.put_line ('ID : '||l_val_aa(l_error_index).id);
dbms_output.put_line ('Value : '||l_val_aa(l_error_index).value);

end loop;

Notice:

• That the error code is a positive number

• How we may lose information (depending on the exception
raised) because we only have the error code:
ORA-01476: divisor is equal to zero ✓

ORA-02290: check constraint (.) violated 

Sparse collections

Remember

error_index is "The number of the DML statement that failed"

For sparse collections

error_index <> index of erroneous record

error_index = x means

The x-th record in the original collection raised an exception
Not: the record at index x

SaveExceptions\sparse_collection.sql

Sparse Collection
Index RecNo Value_1 Value_2

1 1 B C

4 2 E F

6 3 H I

7 4 K L

8 5 N O

Then this is what your
SQL%BULK_EXCEPTIONS will be:

Error_index Error_code

2 1

4 1476

If index 4 & 7 in this collection
cause an exception

error_index, solutions

Loop through original collection
counting to error_index-th record

Make the sparse collection dense again

Avoid sparse collections,
mark rejected records using an extra status attribute

Solution "count"

Error_index Error_code

2 1

4 1476

8 1

14 1

87 2290

Index RecNo Value_1 Value_2

1 1 B C

4 2 E F

6 3 H I

7 4 K L

8 5 N O

sql%bulk_exceptions Collection

Handle Exception

Etc.

disadvantage: extra loop through the collection
(though only if there *are* exceptions) SaveExceptions\sparse_collection_count.sql

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

4 2 E F

6 3 H I

7 4 K L

8 5 N O

Collection

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

2 2 E F

4 3 E F

6 4 H I

7 5 K L

8 6 N O

Collection

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

2 2 E F

6 3 H I

7 4 K L

8 5 N O

Collection

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

2 2 E F

3 3 H I

7 4 K L

8 5 N O

Collection

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

2 2 E F

3 3 H I

4 4 K L

8 5 N O

Collection

Solution "make dense"

Index RecNo Value_1 Value_2

1 1 B C

2 2 E F

3 3 H I

4 4 K L

5 5 N O

Collection

disadvantage: extra loop through the collection
Either always, just before the forall
Or only do this, just before exception handling

SaveExceptions\sparse_collection_to_dense.sql

Process this dense collection

Solution "use status"

Index RecNo Value_1 Value_2 Status / Action

1 1 B C

2 2 BBB CCC

3 3 BCD DCB

4 4 E F

5 5 EEE FFF

6 6 H I

7 7 K L

8 8 N O

Don’t throw away records you don’t need/want but rather set the status indicator

Solution "use status"

Index RecNo Value_1 Value_2 Status / Action

1 1 B C OK / Process

2 2 BBB CCC NOK / Reject

3 3 BCD DCB NOK / Reject

4 4 E F OK / Process

5 5 EEE FFF NOK / Reject

6 6 H I OK / Process

7 7 K L OK / Process

8 8 N O OK / Process

disadvantage:
DML statements for rejected records that won't do anything
(fast per record, but 'unnecessary') SaveExceptions\sparse_collection_status.sql

Process this dense collection,
DML only for 'OK' records

Don’t throw away records you don’t need/want but rather set the status indicator

But is your database….

as simple as this one?

https://tenor.com/view/unsure-uncertain-maybe-not-not-sure-sing-it-on-gif-7228246

Multiple Foralls

So, we want to prepare data

for several tables and

do a forall-insert for each

What if an error anywhere in the tree means the entire tree
for that master record must be rejected?

Insert

Insert

Insert InsertXX

X

X

Save Exceptions – Multiple Foralls

Option 1: Foreign Keys

Temporarily change the FK’s to "Cascading Delete"

• Usually not an option for live databases

• Only works if the tables actually have FK’s

• Logging of these 'extra' rejections require extra queries

• Requires good administration of original states of FK’s and
correctly reestablishing these states, whatever happens

Save Exceptions – Multiple Foralls

Option 2: Add the PK/UK of its parent to each collection

For each bulk exception:

– Determine PK/UK of the parent of the child table

– Delete all rows with same parent-PK in the child table

– If parent has other child tables, step by step delete tree below

– Delete the parent record

– Determine PK/UK of the parent of this parent

– Etc, etc, etc

Gets really ugly, really fast

Save Exceptions – Multiple Foralls

Option 3: Create a Metadata-Collection

Create an extra collection (preferably nested table)
Map each index of each collection in the tree
to the PK/UK of top-level parent

For a record that causes an exception

Get PK/UK of top-level parent from the Metadata

For each table in the tree

From the metadata determine the rows belonging to the top-level-parent

Delete every record belonging to the top-level-parent

Metadata Example

Nested table for mapping could be like:

create or replace type mapping_ot force as object

(table_name varchar2(30)

,collection_index integer

,top_level_pk varchar2(50)

,table_pk varchar2(100)

);

/

create or replace type mapping_ntt force as table of mapping_ot

/

Tablename Collection Index Top Level PK Collection PK

Clients 1 ABC ABC

Clients 2 KLM KLM

Subscriptions 1 ABC S001

Subscriptions 2 ABC S002

Subscriptions 3 ABC S003

Subscriptions 4 KLM S004

Deliveries 1 ABC D101

Deliveries 2 ABC D653

Deliveries 3 KLM D871

Metadata Example

If delivery at collection index 2 fails,
we can query the Nested Table to instantly find out the PK of its top-parent (ABC)

Then we can easily identify for any table the PKs that belong to the same top-parent (ABC)
by querying the Nested Table again

Mapping Nested Table

Metadata Example

Deleting the records for the same top-level PK/UK:

Suppose PK 'R-1534' in table RETURNS raised an exception

delete

from subscriptions

where subscriptions_pk in

(select to_remove.table_pk

from table (mapping_nt) erroneous

join table (mapping_nt) to_remove

on to_remove.top_level_pk = erroneous.top_level_pk

where erroneous.table_name = 'RETURNS'

and erroneous.table_pk = 'R-1534'

and to_remove.table_name = 'SUBSCRIPTIONS'

);

SaveExceptions\MultiForall.sql

Well, not *completely* different: LOG ERRORS

What is LOG ERORS?

DML-statement clause

Logs errors in table with structure:
Name Null? Type

--------------------------------- -------- --------------

ORA_ERR_NUMBER$ NUMBER

ORA_ERR_MESG$ VARCHAR2(2000)

ORA_ERR_ROWID$ ROWID

ORA_ERR_OPTYP$ VARCHAR2(2)

ORA_ERR_TAG$ VARCHAR2(2000)

[COLUMNS THAT NEED TO BE LOGGED] VARCHAR2(4000)

Available since 10.2

Columns to be logged are all Maximum-length character datatype (or RAW)

LOG ERORS, create log table

Creation of logtable:

Manually (obey required structure!)

Or have Oracle do it for you

If you’re using extended datatypes, you may want to do it manually.
Having each column in the table represented in the error table by a varchar2(32767)
might not be what you want.

dbms_errlog.create_error_log
(dml_table_name in varchar2 -- table to create log-table for
,err_log_table_name in varchar2 := null -- name for log-table
,err_log_table_owner in varchar2 := null -- owner for log-table
,err_log_table_space in varchar2 := null -- tablespace for log-table
,skip_unsupported in boolean := false -- include unsupported datatypes?
);

Parameters for create_error_log

err_log_table_name

If omitted

'ERR$_' || table_name

Truncated at maximum tablename-length (30 / 128)

If resulting tablename already exists

ORA-00955: name is already used by an existing object

Parameters for create_error_log

err_log_table_owner
If omitted: the currently connected user

err_log_table_space
If omitted: The default tablespace of err_log_table_owner

skip_unsupported
If table contains columns with unsupported datatypes
True: those columns won’t be in log table
False: ORA-20069: Unsupported column type(s) found

unsupported datatypes are:
Long, *LOB, Bfile, Abstract Data Type(ADT)

How to log errors?

Add the LOG ERORS clause to the end of the DML statement

log errors

[into logtable-name]

[('Tag')]

[reject limit integer|unlimited]

(Optional) clauses

[into logtable-name]

Names the table in which logging is to be inserted

If no into clause is used, same default as with
create_error_log procedure

'ERR$_' || tablename

(Optional) clauses

[('Tag')]

Is a value for column ORA_ERR_TAG$ in the log table

Can be used to identify the log records for this statement

If not supplied ORA_ERR_TAG$ column will be null

(Optional) clauses

[reject limit integer|unlimited]

If more than errors than this occur, the entire statement fails
All errors are still logged into the log table
The exception raised = the last error that occurred

Default is 0, so any error will crash the statement

A statement could look like this

insert

into some_table

(id

,first_column

,second_column

)

select some_sequence.nextval

, some_column

, some_other_column

from some_other_table

log errors

into err$_some_table

('my insert')

reject limit unlimited

LogErrors\log_errors_example.sql

Example LogErrors\log_errors_example.sql

create table log_error_example_table
(id integer generated by default on null as identity
,value integer not null
);

alter table log_error_example_table
add (constraint log_error_example_table_ck1

check (value > 0)
);

begin
dbms_errlog.create_error_log
(dml_table_name => 'log_error_example_table'
,err_log_table_name => 'log_error_example_error'
);

end;
/

Create a table

Constraint says
value must be
more than 0

Create a log-table

insert
into log_error_example_table

(value
)

select case
when mod(level, 3) = 0 then 0
when mod(level, 2) = 0 then level * 10

end
from dual
connect by level <= 10
log errors
into log_error_example_error
('My example of log_errors')
reject limit unlimited

;

Insert rows….

Data table contents

Log table contents

Example LogErrors\log_errors_example.sql

Extra information in the log table…

alter table log_error_example_error
add (dml_timestamp timestamp default systimestamp

,dml_sessionid integer default sys_context('userenv', 'sessionid')
,dml_user varchar2(128) default sys_context('userenv', 'current_user')
,dml_terminal varchar2(128) default sys_context('userenv', 'terminal')
,dml_os_user varchar2(128) default sys_context('userenv', 'os_user')
,dml_nls_date_format varchar2(128) default sys_context('userenv', 'nls_date_format')
,dml_nls_date_language varchar2(128) default sys_context('userenv', 'nls_date_language')
);

Running the same insert as before….

LogErrors\log_errors_extended_example.sql

Some advantages over save exceptions are

• Works for each and every DML statement, not just FORALL

• We have the entire error message, not just error number

• We (can) have every value of every column as it arrives at the table,
not just the ones we have in our statement
(for example, also the values supplied by triggers and defaults)

Some things to be aware of

• No automatic clean up
Table grows over time
‘Old’ errors may contaminate your query if not sensibly tagged

• Multiple error tables on single table possible
Can be just what you want/need.
Can also lead to developers all creating their own error table

• The errorlog table is in no way ‘connected’ to the data table
So dropping or altering one has no effect on the other

Some things to be aware of

• Identification of errors of ‘last DML performed’ only by TAG
So sensible tagging is essential to retrieve the correct errors

• Log table is not session specific
Unless it’s a Global Temporary Table (see later)
Or you add the information yourself

• Structure of log table needs to be kept in sync with original
No errors if not, but you may lose information (see later)

• The logging is committed inside an autonomous transaction

• Statement will always complete successfully (if within reject limit).
To know if records where rejected you need to query the Log table.

Log table as Global Temporary Table (GTT)

• Must be created manually

• Must be defined as "on commit preserve"
or the commit in the autonomous transaction will
remove your logging

Possible advantages to a GTT log table

• All visible logging is done by 'your' session
So TAG only needs to identify statements in this session

• Cleanup automatically at end of session

• Table can be truncated during a session without hurting other
sessions

Disadvantage to a GTT log table

• If error logging needs to be preserved, manually insert it into
another table is needed

Identification based on TAG is tricky

• Procedure name is going to be the same in the next call

• Session id’s are being reused

• Date-time strings may not be unique in multiuser environment

A possible solution

• Use SYS_GUID to generate a Globally Unique Identifier at the
start of a transaction and use it to identify its logged errors

What if structure of original table differs from log table?

• Column added to or dropped from original table

No problem, only columns present in both tables are logged

After also adding a new column to the log table it’s also logged

• Order of columns differ

Again, no problem. Columns are logged as expected

• Column in log table smaller than data in DML statement

Statement crashes with
ORA-38906: insert into DML Error Logging table “[.]" failed
followed by the error message that was attempted to be logged

Multiple statements

What if we have the same situation we discussed for Forall:

Several tables, and if anywhere in the tree a record fails, the
whole tree for the top-level record it belongs to must be
rejected?

Multiple statements

We could:

• Get the FK of erroneous
records from errorlog table

• Get the PK of the top-level
record

• Based on the top-level PK
delete the entire tree

Insert

Insert

ErrorInsert
FK

FK

PK

X

X

X

XLogErrors\MultiInsert.sql

Performance

(Stolen from Oracle-Base, Tim Hall)

Test of insert of 100.000 rows with 2 errors on different
database version (on different servers):

times are in seconds

https://oracle-base.com/articles/10g/dml-error-logging-10gr2

https://oracle-base.com/articles/10g/dml-error-logging-10gr2

Summary

• Log Errors gives the actual error message
Save Exceptions only gives the error code

• Log Errors also stores the actual data
Save Exceptions only has pointers (which are tricky for
sparse collections) to data in another collection

• Errors Logged by Log Errors is persistent
Save Exceptions errors are volatile

• Log Errors can be used for the ultimate bulk operation:
a single DML statement
Save exceptions can only be used for Forall statements

Summary

• With Save Exceptions, correcting executed DML in a tree of
tables requires extra collections and extra plsql coding.
With Log Errors Just some extra DML statements are needed

• With Log Errors the statement always succeeds
(when errors <= reject limit)
Save Exceptions raises an exception that can be handled

• Log Errors makes you work to identify the errors caused by
the last statement
Save exceptions only has the errors for the last statement

• Before 12c performance of Log Errors may be bad

"Stupid questions do exist.
But it takes a lot more time and energy to correct a stupid mistake than it
takes to answer a stupid question, so please ask your stupid questions."

a wise teacher who taught me more than just physics

